Jeremy Erwin wrote:
No, that's not true
Examples of countable sets include the integers, algebraic numbers, and rational numbers. Georg Cantor showed that the number of real numbers is rigorously larger than a countably infinite set, and the postulate that this number, the so-called "continuum," is equal to aleph-1 is called the continuum hypothesis. Examples of nondenumerable sets include the real, complex, irrational, and transcendental numbers.
Algebraic numbers are roots, and ratios of roots. Things such as pi and e and so forth are transcendental. Only a few of the transcendental numbers have names, but there are infinitely more of them than there are of algebraic numbers, or integers, or rational numbers)